
WebAssembly (Wasm)
for Legal Professionals
Exploring Current Parameters in License Compliance

December 2022

By Armijn Hemel, MSc, Tjaldur Software Governance Solutions

Contents

Why this document?...3

What is WebAssembly?...4

WebAssembly formats...5

Source code & binary format...5

Textual representation..5

WebAssembly example..6

WebAssembly open source license compliance..7

Possible steps for compliance.. 9

Dynamic linking and derivative works...11

JavaScript wrappers...11

Dynamic linking..12

Accessing native code from WebAssembly...12

Decompilation of WebAssembly... 13

Outbound licensing... 14

Pick a license...14

Choose a standard license header...14

Make license information available in an easy-to-access format..14

Conclusion.. 15

About the author... 15

Acknowledgments... 15

Disclaimer.. 16

Endnotes... 16

3WEBASSEMBLY FOR LEGAL PROFESSIONALS

Why this document?
A technology that is currently gaining quite a bit of traction is
WebAssembly (Wasm). Documentation for WebAssembly on
the Internet primarily targets developers and focuses on how
to use it or develop for it. What is lacking is documentation that
looks at WebAssembly from an open source license compliance
perspective. This document is an attempt to fill that void.

WebAssembly is not unique on a technical level (most of the tech-
niques have been used in the past one way or another), but on a
governance level, it is a technology that can fundamentally change
the speed of the web. Unlike in the past, the technology is a collab-
orative effort by developers of all major browser engines, and its
development is a part of W3C.

Because it is technologically similar to existing technologies,
license compliance processes that other open source contexts use
do not need to change with WebAssembly. Because the delivery
mechanism for WebAssembly code is primarily over the network,
where you look for compliance information may change.

This document is not a technical document. It is not a program-
ming tutorial, and the simplification of and glossing over many
technical details avoid complicating the goal of this document.
Where necessary, (technical) documentation containing more
information is linked.

This document is also not a legal document, and the reader should
not draw any legal conclusions from this content. The purpose of
this document is to function as a starting point for a discussion
about what open source license compliance for WebAssembly
could look like and its potential for implementation in several
scenarios. A goal is to highlight potential license compliance pitfalls
and help establish a common understanding of the facts, which
may present potential legal issues.

WebAssembly is still evolving, so this document will likely be
outdated at some point. Just because this document does not
describe a certain scenario does not mean that it is, therefore, safe
to use or that there are no potential license compliance issues.

4WEBASSEMBLY FOR LEGAL PROFESSIONALS

What is WebAssembly?
WebAssembly is a recent technology, primarily intended for
creating and deploying high-performance web applications in situ-
ations where JavaScript cannot give that performance, although
it is not limited to this, and there are other use cases1 as well.
WebAssembly programs are downloaded from a server, and a
virtual machine that is typically running inside a web browser
executes the programs. To improve security, the virtual machine is
sandboxed—code running inside the sandbox cannot access code,
data, or resources outside of the sandbox unless it is explicitly
allowed to access these.

One difference with JavaScript is that WebAssembly programs
are downloaded as compiled programs, which can be directly
executed by the virtual machine inside the browser without
needing to be parsed and interpreted. This stands in contrast with
JavaScript programs that are downloaded in (typically minified2)
source code form, which are then interpreted by the browser.

Although the primary design of WebAssembly keeps the
web browser in mind, as the client, there are also standalone
WebAssembly virtual machines, such as WAMR3, Wasmer,4 and
others, allowing for the use of WebAssembly outside of the
context of the web browser.

The WebAssembly website5 describes WebAssembly as follows:

“WebAssembly (abbreviated ‘Wasm’) is a binary
instruction format for a stack-based virtual machine.
Wasm is designed as a portable compilation target
for programming languages, enabling deployment
on the web for client and server applications.”

On the Mozilla WebAssembly website,6 it says the following:

“WebAssembly is a new type of code that can be run
in modern web browsers—it is a low-level assem-
bly-like language with a compact binary format that
runs with near-native performance and provides
languages such as C/C++, C#, and Rust with a compi-
lation target so that they can run on the web. It is
also designed to run alongside JavaScript, allowing
both to work together.”

The execution of downloaded compiled code in a sandbox envi-
ronment inside a browser is not a new concept, and there are
several historical examples, most notably Java applets and
ActiveX. What makes WebAssembly stand out from these histor-
ical examples is that WebAssembly is an open standard that
teams of all major browser engines are working on instead of a
technology pushed by a single vendor or a technology that only
works in a single browser or that only works well if the browser
is running on a certain client operating system (which was, for
example, the case with ActiveX). WebAssembly does not limit itself
to a single programming language—programs written in multiple
languages can be combined into WebAssembly binaries.

Even though the purpose of the original design of WebAssembly
was to speed up operations where JavaScript doesn’t suffice, it
is expected that developers will come up with an entirely new
class of applications or uses that the WebAssembly designers
never thought of. Some people are working on embedding
WebAssembly virtual machines as a shared library to make it
possible to enhance every program with WebAssembly.

5WEBASSEMBLY FOR LEGAL PROFESSIONALS

WebAssembly formats
The WebAssembly documentation mentions several formats:

1.	 Source code (possibly written in any of several program-
ming languages)

2.	 A binary format produced by a compiler that is then
loaded into and executed by the virtual machine

3.	 A textual representation of the binary format, similar to
instructions of an assembly language

Source code & binary format
The source code is what programmers will typically write. They
compile the source code into binary code using a compiler such as
Emscripten7, which can compile any LLVM-supported language into
a WebAssemblybinary. Currently, the compilers support C/C++, C#,
and Rust well. Support for other languages, such as Python8, is in
development.

The binary format of the program consists of object code instruc-
tions that the virtual machine inside the web browser executes.
A compiler from source code written by a programmer typically
generates it.

Textual representation
The textual representation of the binary format is typically not
source code, but it is the textual representation of the binary
instructions that the sandbox can execute. It is equivalent to the
binary format, and there are tools that can convert the binary
instructions into the textual representation and vice versa.

The textual representation is an assembler-like language with
instructions called “S-expressions” manipulating a stack9. For
instance, a small part of the textual representation of the binary

code of an example that will be introduced later in this document
looks like this:

 (func (;6;) (type 2) (result i32)
	 (local i32 i32 i32)
	 i32.const 1078
	 local.set 0
	 i32.const 0
	 local.set 1
	 local.get 0
	 local.get 1
	 call 51
	 drop
	 i32.const 0
	 local.set 2
	 local.get 2

	 return)

These instructions manipulate the state of the virtual machine.

The syntax is reminiscent of, for example, assembler code for
an ARM processor or a MIPS processor. Data is put onto a stack,
popped from it, and manipulated. With some imagination,
WebAssembly instructions can be seen as an instruction set, with
the WebAssembly virtual machine as the CPU10.

It is possible to write small programs directly using these assem-
bler-like instructions, but it is more likely that programmers will
write code in a higher-level language such as Rust, C, or C++ (for
efficiency, more expression power, and reusability). A programmer
would then use a compiler to translate the high-level source code
into binary code or its textual representation.

While in almost all cases the virtual machines will execute the
binary code, most WebAssembly engines can load and interpret
the instructions of the textual representation “just in time.”

6WEBASSEMBLY FOR LEGAL PROFESSIONALS

WebAssembly example
From a compliance standpoint, it is important to understand a
little bit about how the compilation process works. Specifically,
what happens with comments containing licensing information
during compilation? Is information from a source code file included
in the distributed file, and is the necessary compliance infor-
mation, if any, included in the binary format after compilation?

Let’s look at an example from the Mozilla Developer Network11.
Assume that the necessary components and tools have been in-
stalled, such as Emscripten (a compiler for WebAssembly) and wabt (a
tool to convert between the binary and textual representation of the
compiled code), and that compilation is done on a Linux system. The
example consists of a very simple C file, stored in a file called hello.c:

#include <stdio.h>

int main() {

	 printf("Hello World\n");

}

The Emscripten compiler then compiles this as follows:
$ emcc hello.c -o hello.html

which will generate the following few files:

•	 hello.html

•	 hello.js

•	 hello.wasm

The Emscripten compiler generates the files hello.html and hello.js,
which do not use any information from the C file except the name of
the WebAssembly binary file. The file hello.wasm is a WebAssembly
binary file compiled from the “hello.c” source code file.

During a web session where a user requests a resource from
a web server, the web server sends the binary file to a client

(typically the web browser, but could also be a headless client12),
and it is executed in a sandbox environment running in the web
browser. The web browser must support WebAssembly for this to
work. The JavaScript code can be used to interact with the running
WebAssembly binary and the .html webpage.

An interesting feature of WebAssembly is that the design of the
instruction set allows for streaming instructions from the server
to the client—the client doesn’t need to wait for the server to finish
sending all the binary code with instructions but can already start
processing while receiving the rest of the code13. Therefore, it is
possible to create a program that continuously sends WebAssembly
code to a client as a continuous, never-ending stream of instructions.
This code could include instructions compiled from open source code,
which could add a unique twist to license compliance fact patterns.

The use of tools from the “wabt” package14 can convert the binary
file to a textual, assembly-like representation. The tool wasm2wat,
for example, can dump the contents of the binary file into the textual
representation of the WebAssembly instructions. The command

$ wasm2wat hello.asm

will output around 5,500 lines of assembly-like instructions for this
simple Hello World example.

7WEBASSEMBLY FOR LEGAL PROFESSIONALS

WebAssembly open source license compliance
Open source license compliance for WebAssembly is not very
different from license compliance in other situations. In fact, it is
pretty much the same, and existing licenses are applied to a new
technical situation that is slightly different from current common
patterns. WebAssembly does present new programming patterns
that may be unique to many lawyers. But because it is so similar,
there is also a lot of expertise available, and it is not necessary to
reinvent the wheel. Instead, you can use best practices from, for
example, the OpenChain Project15.

Most open source licenses have clauses that are activated
whenever distribution occurs. What you need to do when the code
is distributed depends on the license. Some licenses require that
the complete and corresponding source code (including license
texts) is made available. For example, the GNU Public Licenses
require either the distribution of source code together with the
binary or that a written offer for the source code is given to the
user. Other licenses may require that the license texts (and some-
times some other information) is included with the software
(examples: MIT, 2-clause BSD, and Apache 2). The above catego-
rization is a simplification, and some licenses will have varying
requirements. It is therefore important to know what licenses of
software you are using and what they require you to do.

The first question to ask is whether distribution takes place. In
the standard WebAssembly use case, the answer to that would be
“yes.” Sending WebAssembly binary code from a web server to a
client is typically a form of distribution. If you use any open source
code, and there are clauses that are activated by distribution,
then you need to fulfill the license obligations. Even with seem-
ingly simple licenses, you may have other non-distribution-related
license obligations as well.

For example, let’s look at the MIT license16, which is a popular
license among website developers (a lot of JavaScript code is
licensed under this license). It is also one of the shorter open
source licenses; however, it contains license compliance require-
ments (as a condition to the license) when the binary software is
distributed. You can find the following MIT license template on the
SPDX website (emphasis added for this document):

MIT License

Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associ-
ated documentation files (the "Software"), to deal in the
Software without restriction, including, without limitation,
the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT, OR OTHERWISE, ARISING
FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

8WEBASSEMBLY FOR LEGAL PROFESSIONALS

The license basically says that every time a copy of the software
is distributed in any form (source code or binary), the license text
and copyright notice have to be distributed with the software as
well. In the context of a WebAssembly codebase licensed under
the MIT license, that would mean shipping the MIT license text
and copyright notice with either the binary .wasm file or its textual
representation.

So, how do you do this when most .wasm files are delivered
behind the scenes for high optimization purposes to a web
browser and intended to be invisible to the user? If the binary code
contains the license information, and the user can easily access
that license information, then you have met the condition of the
license. The next question is as follows: Is the license information
included with the binary when you compile the code?

As a test, the file “hello.c” from before was copied to “hello_
license.c,” and the above MIT license text was added as a comment
at the top of “hello_license.c.” The file with the license text is signifi-
cantly larger than the original file. Whereas the normal source
code file is a mere 65 bytes, the source code file with license infor-
mation is 1217 bytes:

$ du -b *.c

65 hello.c

1217 hello_license.c

To verify what the compiler does with the license text at the top of
the second file, the two C files were compiled into wasm files:

$ emcc hello.c -o hello.html

$ emcc hello_license.c -o hello_license.html

and compared for size and MD5 checksum:
$ du -b *.wasm

12394 hello_license.wasm

12394 hello.wasm

$ md5sum *.wasm

74118fea55ff6490d8fdd9abb201c3b1 hello_license.wasm

74118fea55ff6490d8fdd9abb201c3b1 hello.wasm

As you can see from the above, the compiler discards comments
(in this case the license text) because the output of the two compi-
lation commands is identical. This means that the wasm binary
does not contain any of the license information, and the user who
is only provided the binary cannot extract or access the license
text; therefore, the user has to obtain the licensing information in
another way.

There are a few ways this can be done.

Browser-based delivery of license information
If the user can interact with the WebAssembly code that is loaded
on a page, then a few possible options for satisfying the license
condition could include the following:

•	 Displaying the license information on the webpage that the
user is viewing

•	 Displaying the license information in the readable HTML
source code for the webpage (so it can be seen when a user
views the source)

•	 Adding the license information as comments in the JavaScript
code that is sent with the WebAssembly binary file

•	 Storing the license information in a separate file or URL, which
is then linked to the web page source code or the JavaScript
files

•	 Including an industry-standard license identifier, such as
SPDX® ISO/IEC 5962:2021 the user can follow to identify the
license text (note that it may additionally be necessary to
include the copyright notice as well)

Textual representation code delivery
Another possibility is to generate and deliver the textual represen-
tation of the binary code and add the relevant information at the
top of this file in comments (lines starting with two semicolons),

9WEBASSEMBLY FOR LEGAL PROFESSIONALS

for example (example truncated for clarity):
;; MIT License

;;

;; Copyright (c) <year> <copyright holders>

;;

;; Permission is hereby granted, free of charge, to

any person

[...]

or, using SPDX license IDs17:
;; Copyright (c) <year> <copyright holders>

;; SPDX-License-Identifier: MIT

[...]

You should note that the textual format is typically not the default
mode to distribute WebAssembly programs. Using the textual
format instead of the binary format might come with a perfor-
mance hit, as you must first convert the textual format back to the
binary format or interpret it, which is something developers will
likely not want.

The above methods require that the license texts and other
information be extracted first from the original source code. Of
course, there is also the alternative of providing the complete
and corresponding source code containing all the legal texts next
to the WebAssembly binary. This removes the need to extract
license texts, and for some licenses, this is possibly a better
way to provide the information than first extracting the license
texts and copyright notices and offering those separately. For
example, for programs licensed under the GNU General Public
License version 2.0 that are distributed by offering access to
copy over the network, it is typically sufficient to provide “equiv-
alent access” to the sources under GPL-2.0 (section 3) to fulfill the
primary license obligations.

To recapitulate, there are the following five ways:

1.	 Display the license information on an (interactive) website.

2.	 Include license information in the webpage source code or
JavaScript files, or add a separate file that is linked in the
webpage source code or JavaScript files.

3.	 Use the textual representation, and add the corre-
sponding license information.

4.	 Provide the complete and corresponding source code, and
make it available next to the binary code.

5.	 Any of the above, but use an industry-standard license
identifier referencing the specific license text.

Possible steps for compliance
Let’s explore a few solutions for license compliance for distributing
WebAssembly binaries.

In the first scenario, the chosen solution for compliance is that
any notices and other legal texts (such as, for example, a written
offer) are stored in a separate file that is stored next to the
WebAssembly binary file and made available as described below.

In the second scenario, the corresponding source code including
all the license texts is provided. These two scenarios are not
mutually exclusive: You can provide the source code archive and
separate files with all the license information and (if applicable) a
written offer.

What they both have in common is that first, you need to review
license obligations to see whether anything should be provided,
and if so, what should be provided (only the license text or possibly
more information, such as copyright notices, author notices,
complete and corresponding source code, or a written offer).

https://spdx.org/licenses/GPL-2.0-only.html

10WEBASSEMBLY FOR LEGAL PROFESSIONALS

Scenario 1: Separate file with license notices and other
legal information
In the first scenario, provide a separate file with all the license
notices and other legal information. For this, follow these steps:

1.	 Extract license notices, copyright statements, and author
statements from the source code (either manually or
using tools such as FOSSology18, ScanCode,19 or others).

2.	 Create a file or a collection of files (for example, an SBOM
file in SPDX format20 or a separate text file) with the
necessary information (license texts, plus a written offer
if necessary), and store them next to the WebAssembly
binary.

3.	 Make sure that users can find the file with legal
information:

a.	 Include a link to the file in the HTML or the
JavaScript source code.

b.	 Display the link to the file with license informa-
tion on the web page.

In our “Hello World” case, this means extracting the license infor-
mation from “hello.c” and providing the license information as
an SBOM file or in a separate file, making it available via the web
server and linking it on the website or pointing to it in the HTML
code.

Scenario 2: Provide complete and corresponding source
code next to the binary file
In the second scenario, provide the complete and corresponding
source code next to the binary file. One benefit is that the
extraction of license notices, copyright statements, and author
statements from the source code is not necessary, as they are
already in the source code. For the rest, it isn’t that much different:

1.	 Create an archive with the necessary source code
(possibly including the build scripts, depending on the
license of the source code), and store it next to the
WebAssembly binary.

2.	 Make sure that users can find the file with the source
code:

a.	 Include a link to the source code archive in the
HTML or the JavaScript source code.

b.	 Display the link to the source code archive on the
web page.

For our “Hello World” program, this means uploading the source
code file to the web server and linking it on the website or pointing
to it in the HTML code.

11WEBASSEMBLY FOR LEGAL PROFESSIONALS

Dynamic linking and derivative works
For several licenses (particularly copyleft licenses), recurring topics
in any compliance activity are understanding what constitutes
derivative works and dynamic linking, so it is worth investigating
whether this can also be done in the context of WebAssembly, and
if so, how it can be done. Of course, whether something is a deriv-
ative of another program cannot be said without looking into the
actual code itself, and no blanket statement can be given.

WebAssembly programs are not necessarily standalone programs:
WebAssembly’s design works in such a way that WebAssembly
programs can be combined with other software, primarily
JavaScript.

JavaScript wrappers
WebAssembly works with JavaScript. WebAssembly speeds up
operations that are performance sensitive and for which JavaScript
is not fast enough. JavaScript can manipulate the data on a
webpage, passing the difficult work on to the WebAssembly code.
This mechanism is not unique to JavaScript and WebAssembly.
In other programming languages, it is also possible to call code
written in other languages. For example, Python programs can be
extended with modules written in C (this depends on the Python
interpreter that is used, and it might not work or work well with
every Python interpreter), Java has a mechanism called “Java
Native Interface” (JNI), and so on.

The Mozilla website describes the WebAssembly JavaScript
wrapping as follows21:

“What's more, you don't even have to know how to create
WebAssembly code to take advantage of it. WebAssembly
modules can be imported into a web (or Node.js) app,
exposing WebAssembly functions for use via JavaScript.

JavaScript frameworks could make use of WebAssembly
to confer massive performance advantages and new
features while still making functionality easily available to
web developers.”

JavaScript code can call WebAssembly functions using a wrapper
mechanism22,23. The wrapper mechanism first converts the
data that needs to be passed from JavaScript to WebAssembly
from data types used in JavaScript into data types supported
by WebAssembly. It then calls the WebAssembly function in the
virtual machine using the converted parameters, gets the results,
converts the results back into JavaScript data types, and makes
these available to the JavaScript functions, which can then further
process the results.

These wrappers can be created in two different standard ways.
The first way is to define a table with function references24,
fetching and loading the WebAssembly binary code and assigning
the functions in the WebAssembly code to slots in the table. The
second way is to first fetch WebAssembly code, load it, and then
access functions of the WebAssembly module25 that are exported
to the outside world by the virtual machine. The WebAssembly
functions are exported from WebAssembly to JavaScript and are
called “exports.”

The WebAssembly code can also access JavaScript functions.
These are imported into WebAssembly from JavaScript and are
called “imports.”

Imported and exported functions can create a coupling between
the WebAssembly and the JavaScript code. How tight this coupling
is depends on the situation. There could be a minimal coupling (for
example, a generic WebAssembly module that exports functions),
but it is also possible to have a more intimate coupling between

12WEBASSEMBLY FOR LEGAL PROFESSIONALS

the WebAssembly code and the JavaScript code. To determine
whether there is a coupling to the degree that it would constitute a
derivative work or a “work based on” another program, it is neces-
sary to understand how code interacts with other code, which
methods are imported and exported, and how these are used.

Dynamic linking
Code in WebAssembly can be dynamically linked. There doesn’t
seem to be a standard mechanism for this supported across
compilers, but rather, support will be dependent on each compiler.
In the context of the Emscripten compiler,26 there is support (with
some limitations) for shared modules that enable dynamic linking.
The same approach may not work with other Wa compilers.
Emscripten supports dynamic linking at load time (loading with the
main module) or at runtime (calling side modules after running the

program). Standardization in this area of WebAssembly appears
to be in an earlier stage of development and will require further
research to fully understand the implications.

Accessing native code from WebAssembly
Proposals for accessing specific functionality in or outside the
virtual machine have been made, including the WebAssembly
System Interface (WASI)27. WASI’s aim is to provide a standardized
and platform-neutral API to access functionality that is imple-
mented or exposed by the virtual machine. These proposals are
currently still in development and possibly not implemented by
every virtual machine. The WASI interface gives a WebAssembly
application access to host functions. For example, you could have
an application write and save a file to the local host system28.

13WEBASSEMBLY FOR LEGAL PROFESSIONALS

Decompilation of WebAssembly
There are situations where the only available code is the binary
code or its textual representation, and there is no source code
where source code is needed (for example, for an audit, the source
code is typically easier to audit than the WebAssembly binary
code or its textual representation). One way to get something like
source code is by decompiling the WebAssembly binary code.
There are tools that can do this—for example, the wasm-decompile
tool from the wabt package29. You can invoke this as follows:

$ wasm-decompile hello.wasm

The output is something that resembles a source code file,
although it does not necessarily resemble the original source code
at all. The original hello.c file is six lines, while the decompiled
code is more than 1,800 lines.

This is not surprising. The WebAssembly virtual machine is on
purpose fairly simple with a small set of instructions. The result is
that when writing complex programs in a higher-level language,

the code has to be translated to the simpler instructions of the
virtual machine, which can lead to many WebAssembly instruc-
tions being generated because WebAssembly doesn’t have the
same expression power. Going back from the low-level instruc-
tions to a higher-level language is a lot more work, and it might
also be impossible to recreate what was originally written.

WebAssembly programs can be written in various languages,
such as C, C++, Rust, and others, and these are all compiled into
the same WebAssembly instructions (and could also be combined
into a single program). Unless extra information is kept about
what language the program was originally written in, it is hard to
recreate something that resembles the original program.

It could very well be that in the future, smarter or more advanced
decompilers will be developed. Until then, it is wise to not rely on
the decompiled output of WebAssembly programs as reflecting
the original source code’s structure or specific content.

14WEBASSEMBLY FOR LEGAL PROFESSIONALS

Outbound licensing
So far, the focus has been on inbound licensing: what to do with
code from third parties containing open source code that is reused
and/or redistributed. How to license your own contributions is also
something that you should consider. Depending on the license
that you choose, there are also actions that you can take to make it
easier for downstream recipients of your code who might want to
redistribute your code themselves as well.

Pick a license
The first step is to pick a license. There are some things that you
probably want to take into consideration:

1.	 How are the other components that you are using
licensed? It makes no sense to pick a license for your code
that is not compatible with the licenses of other compo-
nents. A license compatibility check is recommended.

2.	 What obligations are there when licensing the code under
a certain license?

The license you pick has consequences for downstream recipi-
ents of your code if they want to redistribute the code. It is good to
be aware of how others in the same ecosystem are licensing their
code. After all, this is the code that your code will most likely be
combined with. In many ecosystems, there tends to be a prefer-
ence for particular licenses.

Choose a standard license header
It is strongly recommended to use a standard license header
instead of inventing your own. License scanners and legal profes-
sionals recognize standard license headers. Writing new versions
unnecessarily complicates things. The SPDX license website30 lists
templates for common standard headers for many licenses that
you can use.

Make license information available
in an easy-to-access format
If you pick a license for your own code that comes with license
obligations, such as disclosure of license texts or the complete
and corresponding source code, it really helps your downstream
recipients if you also provide a software bill of materials (SBOM),
or at the minimum, provide the necessary information to create
SBOM files. To create SBOM files, look at SPDX31. Other lightweight
mechanisms for communicating a project’s license information
are ABOUT32 or REUSE33 (the latter of which is based on SPDX
metadata fields).

15WEBASSEMBLY FOR LEGAL PROFESSIONALS

Conclusion
WebAssembly is a relatively new technology, but this doesn’t mean it can escape from the same rules for distributing software as other
technologies; license terms will still apply. It is without question that open source software will be used, and this means that open source
license compliance will be required when distributing WebAssembly software. Fortunately, you can leverage a lot of expertise and expe-
rience that is already available in the community.

This document explored some of the potential problem areas for WebAssembly open source compliance, such as which formats are
used in the WebAssembly ecosystem, where (or where not) to put license texts and other license disclosure documents, interactions
with other code (Javascript wrappers, dynamic linking) and outbound licensing. Now it is up to the WebAssembly ecosystem to come up
with license compliance best practices that best serve that ecosystem.

About the author
Armijn Hemel, MSc, is a leading open source license compliance engineer hailing from The Netherlands. In the past 15 years, he has
helped hundreds of companies with open source compliance, ranging from fighting copyright trolls in court to auditing software before
going to market. He is also actively writing open source tools to help with open source supply chain management.

Acknowledgments
Special thanks to Luis Villa (Tidelift), Steve Winslow (Boston Technology Law), and Mike Dolan (The Linux Foundation) for providing
comments and improvements to the drafts. Thanks also to the members of the legal community who support compliant technological
and open source innovation in all its forms, including broadening their understanding of WebAssembly to ensure a thriving open source
ecosystem across organizations and jurisdictions around the world.

16WEBASSEMBLY FOR LEGAL PROFESSIONALS

Disclaimer
This report is provided “as is.” The Linux Foundation and its authors, contributors, and sponsors expressly disclaim any warranties
(express, implied, or otherwise), including implied warranties of merchantability, noninfringement, fitness for a particular purpose, or
title related to this report. In no event will the Linux Foundation and its authors, contributors, and sponsors be liable to any other party
for lost profits or any form of indirect, special, incidental, or consequential damages of any character from any causes of action of any
kind with respect to this report, whether based on breach of contract, tort (including negligence), or otherwise, and whether or not they
have been advised of the possibility of such damage. Sponsorship of the creation of this report does not constitute an endorsement of
its findings by any of its sponsors.

Endnotes
1 https://webassembly.org/docs/use-cases/

2 �“minified JavaScript” is a form of JavaScript with most markup (line feeds and
so on) replaced to make the code that needs to be sent from the server to the
web browsers smaller

3 https://github.com/bytecodealliance/wasm-micro-runtime

4 https://github.com/wasmerio/wasmer

5 https://webassembly.org/

6 https://developer.mozilla.org/en-US/docs/WebAssembly

7 https://emscripten.org/

8 https://pythondev.readthedocs.io/wasm.html

9 �https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_
text_format

10 https://github.com/WebAssembly/design/blob/main/Rationale.md

11 https://developer.mozilla.org/en-US/docs/WebAssembly/C_to_wasm

12 A headless client is a program that doesn’t graphically display results to the user.

13 https://webassembly.github.io/spec/web-api/index.html

14 https://github.com/WebAssembly/wabt

15 https://www.openchainproject.org/

16 https://spdx.org/licenses/MIT.html

17 �https://www.linuxfoundation.org/blog/blog/solving-license-compliance-at-
the-source-adding-spdx-license-ids

18 https://www.fossology.org/

19 https://github.com/nexB/scancode-toolkit/

20 https://spdx.dev/

21 https://developer.mozilla.org/en-US/docs/WebAssembly/Concepts

22 https://developer.mozilla.org/en-US/docs/WebAssembly/Exported_functions

23 https://webassembly.org/getting-started/js-api/

24 �https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/WebAssembly/Table

25 �https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/WebAssembly/Instance/exports

26 https://emscripten.org/docs/compiling/Dynamic-Linking.html

27 https://github.com/WebAssembly/WASI

28 �https://wasmbyexample.dev/examples/wasi-hello-world/wasi-hello-world.
assemblyscript.en-us.html

29 https://github.com/WebAssembly/wabt/blob/main/docs/decompiler.md

30 https://spdx.org/licenses/

31 https://spdx.dev/

32 https://github.com/nexB/aboutcode-toolkit/blob/develop/docs/source/
specification.rst

33 https://reuse.software/

https://webassembly.org/docs/use-cases/
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/wasmerio/wasmer
https://webassembly.org/
https://developer.mozilla.org/en-US/docs/WebAssembly
https://emscripten.org/
https://pythondev.readthedocs.io/wasm.html
https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
https://github.com/WebAssembly/design/blob/main/Rationale.md
https://developer.mozilla.org/en-US/docs/WebAssembly/C_to_wasm
https://webassembly.github.io/spec/web-api/index.html
https://github.com/WebAssembly/wabt
https://www.openchainproject.org/
https://spdx.org/licenses/MIT.html
https://www.linuxfoundation.org/blog/blog/solving-license-compliance-at-the-source-adding-spdx-license-ids
https://www.linuxfoundation.org/blog/blog/solving-license-compliance-at-the-source-adding-spdx-license-ids
https://www.fossology.org/
https://github.com/nexB/scancode-toolkit/
https://spdx.dev/
https://developer.mozilla.org/en-US/docs/WebAssembly/Concepts
https://developer.mozilla.org/en-US/docs/WebAssembly/Exported_functions
https://webassembly.org/getting-started/js-api/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Table
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Table
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Instance/exports
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Instance/exports
https://emscripten.org/docs/compiling/Dynamic-Linking.html
https://github.com/WebAssembly/WASI
https://github.com/WebAssembly/wabt/blob/main/docs/decompiler.md
https://spdx.org/licenses/
https://spdx.dev/
https://github.com/nexB/aboutcode-toolkit/blob/develop/docs/source/specification.rst
https://github.com/nexB/aboutcode-toolkit/blob/develop/docs/source/specification.rst
https://reuse.software/

December 2022

Copyright © 2022 The Linux Foundation

This report is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International Public License.

To reference the work, please cite as follows: Armijn Hemel, “WebAssembly (WASM) for legal professionals:
Exploring current parameters in license compliance,” The Linux Foundation, December, 2022.

twitter.com/linuxfoundation

facebook.com/TheLinuxFoundation

linkedin.com/company/the-linux-foundation

youtube.com/user/TheLinuxFoundation

github.com/LF-Engineering

Founded in 2021, Linux Foundation Research explores the growing scale of open source

collaboration, providing insight into emerging technology trends, best practices, and

the global impact of open source projects. Through leveraging project databases and

networks, and a commitment to best practices in quantitative and qualitative methodol-

ogies, Linux Foundation Research is creating the go-to library for open source insights for

the benefit of organizations the world over.

https://linuxfoundation.org/
https://creativecommons.org/licenses/by-nd/4.0/
https://twitter.com/linuxfoundation
youtube.com/user/TheLinuxFoundation
https://inkedin.com/
youtube.com/user/TheLinuxFoundation
https://github.com/LF-Engineeringhttp://

	Why this document?
	What is WebAssembly?
	WebAssembly formats
	Source code & binary format
	Textual representation

	WebAssembly example
	WebAssembly open source license compliance
	Possible steps for compliance

	Dynamic linking and derivative works
	JavaScript wrappers
	Dynamic linking
	Accessing native code from WebAssembly

	Decompilation of WebAssembly
	Outbound licensing
	Pick a license
	Choose a standard license header
	Make license information available in an easy-to-access format

	Conclusion
	About the author
	Acknowledgments
	Disclaimer
	Endnotes

